Prevention of Ventilator-Associated Events

Presented by:

Michel Klompas MD, MPH, FIDSA, FSHEA

Hospital Epidemiologist, Brigham and Women's Hospital, Boston, MA Professor, Harvard Medical School and Harvard Pilgrim Health Care Institute

December 2023

Virginia Infection Prevention Training Center

Disclosures

Grant funding

- Centers for Disease Control and Prevention
- Massachusetts Department of Public Health
- Agency for Healthcare Research and Quality

Royalties

• UpToDate Inc.

VAP?

NOT ON MY WATCH.

from doctorrw.blogspot.com

Why did CDC replace VAP with VAE?

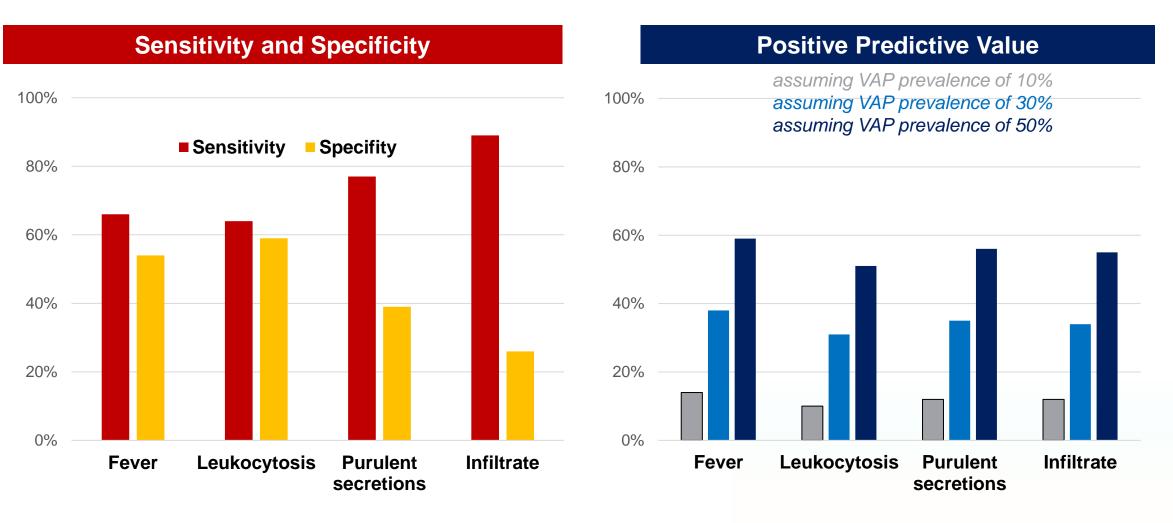
The Challenge of VAP Diagnosis

- Many complications of critical care present with the same clinical signs as VAP
 - Radiographic opacities
 - Fever
 - Abnormal white blood cell count
 - Impaired oxygenation
 - Increased pulmonary secretions

"Diffuse patchy airspace disease right greater than left with obliteration of both hemi-diaphragms. Opacities possibly slightly increased since yesterday accounting for changes in patient position and inspiration. This could represent atelectasis, pneumonia, or effusion."

Sources of fever and infiltrates

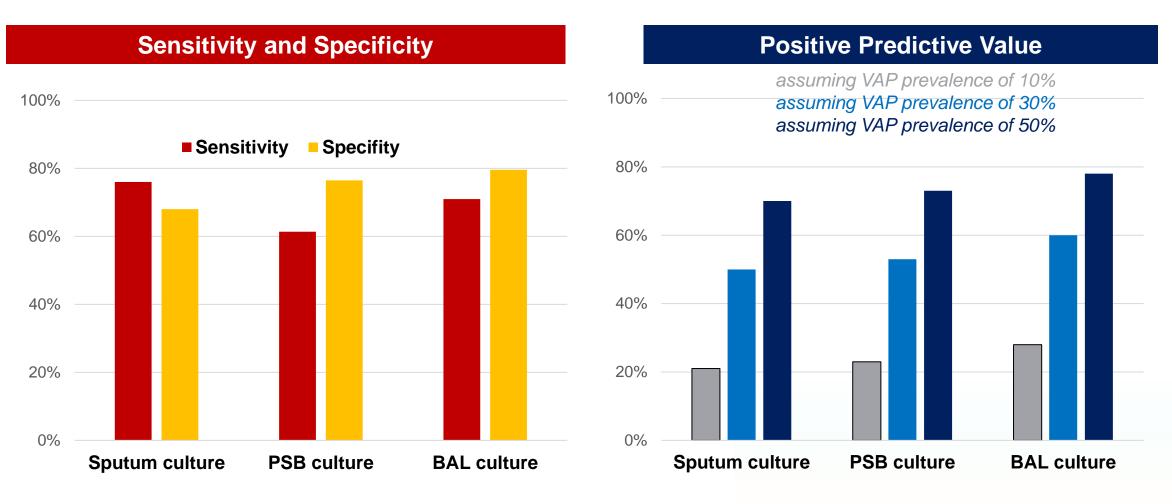
- ARDS
- Thromboembolic disease
- Hemorrhage
- Infarction
- Fibrosis
- Carcinoma
- Lymphoma
- Contusion


PLUS

Pulmonary edema Atelectasis Contusion Fibrosis

Meduri, Chest 1994; 106:221-235 Petersen, Scand J Infect Dis 1999; 31:299-303

Accuracy of Clinical Signs for VAP


Meta-analysis of 25 studies examining accuracy of clinical signs for VAP relative to histology, N=75 to 336 per sign

Fernando, Intensive Care Med 2020;46:1170-9

Accuracy of Respiratory Cultures for VAP

Meta-analysis of 25 studies examining accuracy of clinical signs for VAP relative to histology, N=75 to 336 per sign

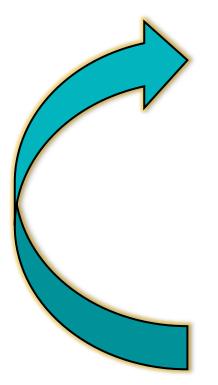
Fernando, Intensive Care Med 2020;46:1170-9

Implications for Prevention

The Classic Ventilator Bundle

lines SOME IS NOT A NUMBER, SOON IS NOT A TIME.

Daily sedative interruptions


Spontaneous breathing trials

Stress ulcer prophylaxis

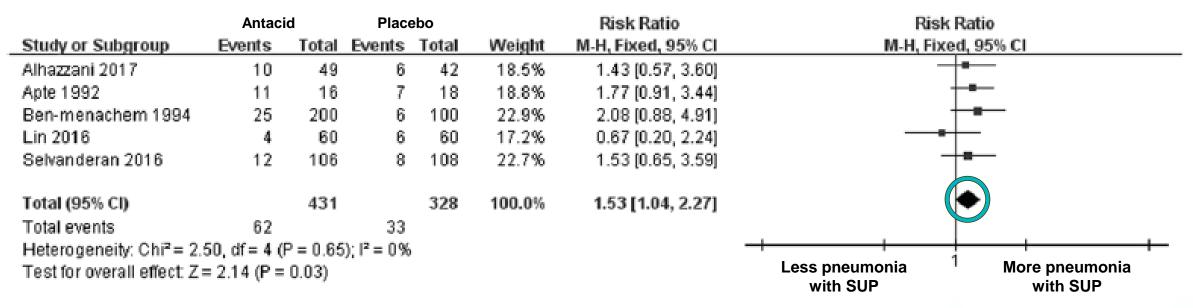
DVT prophylaxis

Oral care with chlorhexidine

Circularity Between VAP Prevention Practices and the VAP Definition

VAP Definition

Fever Leukocytosis Purulent Secretions Positive cultures


Oral care with CHG Silver Coated ETT Subglottic secretion drainage Semi-recumbent position etc.

positive cultures and/or secretions

Stress Ulcer Prophylaxis

Randomized controlled trials of ulcer prophylaxis vs placebo in patients getting enteral nutrition

Ventilator-associated pneumonia

Significantly higher risk for VAP!

Crit Care 2018;22:20

Subglottic Secretion Drainage

Meta-Analysis of randomized trials: Significantly Lower VAP Rates

	SSD)	Cont	rol		Risk Ratio			Risk Ra	tio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Random	n, 95% CI
Mahul 1992	9	70	21	75	3.8%	0.46 [0.23, 0.93]	1992			
Valles 1995	14	95	25	95	5.5%	0.56 [0.31, 1.01]	1995			
Kollef 1999	8	160	15	183	2.8%	0.61 [0.27, 1.40]	1999			
Bo 2000	8	35	15	33	3.7%	0.50 [0.25, 1.03]	2000			
Smulders 2002	3	75	12	75	1.3%	0.25 [0.07, 0.85]	2002		<u> </u>	
Girou 2004	5	8	б	10	3.5%	1.04 [0.50, 2.18]	2004			-
Liu 5 2006	3	48	10	50	1.3%	0.31 [0.09, 1.07]	2006			
Liu Q 2006	14	41	30	45	8.5%	0.51 [0.32, 0.82]	2006			
Lorente 2007	11	140	31	140	4.6%	0.35 [0.19, 0.68]	2007		—	
Zheng 2008	9	30	16	31	4.6%	0.58 [0.31, 1.11]	2008			
Yang 2008	12	48	20	43	5.6%	0.54 [0.30, 0.97]	2008			
Bouza 2008	13	345	19	369	4.0%	0.73 [0.37, 1.46]				
Lacherade 2010	25	169	42	164	9.6%	0.58 [0.37, 0.90]	2010			
Tao 2014	52	102	34	47	28.3%	0.70 [0.54, 0.91]			-#-	
Damas 2014	15	170	32	182	5.7%	0.50 [0.28, 0.89]				
Koker 2014	5	23	10	28	2.3%	0.61 [0.24, 1.53]				
Gopal 2015	13	120	25	120	5.0%	0.52 [0.28, 0.97]				Risk Ratio 0.58
Total (95% CI)		1679		1690	100.0%	0.58 [0.51, 0.67]				(0.51- 0.67)
Total events	219		363							
Heterogeneity: Tau ² =	0.00; Ch	$ni^2 = 12$	2.12, df =	= 16 (P	= 0.74);	$ ^2 = 0\%$		0.01	0,1 1	10
Test for overall effect:	Z = 7.71	L (P < C	.00001)					0.01	Favors SSD Fa	

Crit Care Med 2016;44:830-840

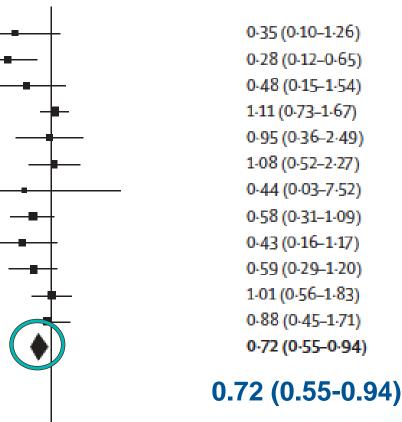
Subglottic Secretion Drainage

Meta-Analysis of randomized trials: No Impact on Ventilator Days or ICU Days

Ventilator Days

	SSD			Control				Mean Difference		Mean Difference
Study or Subgroup	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	Weight	IV, Random, 95% CI [days]	Year	IV, Random, 95% CI [days]
Kollef 1999	1.5	3.3	160	1.9	5.1	183	29.1%	-0.40 [-1.30, 0.50]	1999	
Smulders 2002	5.8	4.4	75	7.1	5.4	75	9.5%	-1.30 [-2.88, 0.28]	2002	
Liu 5 2006	15	14	48	15	10	50	1.0%	0.00 [-4.83, 4.83]	2006	
Lorente 2007	10.5	15.91	140	11.1	15.19	140	1.8%	-0.60 [-4.24, 3.04]	2007	
Bouza 2008	2	5.3	345	1.9	3.8	369	50.8%	0.10 [-0.58, 0.78]	2008	+
Lacherade 2010	10.9	10.6	169	10.8	14	164	3.3%	0.10 [-2.57, 2.77]	2010	
Damas 2014	11.71	11.87	170	10.87	9.79	182	4.5%	0.84 [-1.44, 3.12]	2014	
Total (95% CI)			1107	_		1163	100.0%	-0.16 [-0.64, 0.33]		No difference.
Heterogeneity: Tau ² =	,	-	5 (P = 0).72); I ² = 0%					-	
Test for overall effect:	Z = 0.64 (P =	0.52)								Favors SSD Favors Control

ICU Days


		SSD		Co	ontrol			Mean Difference		Mean Difference	
Study or Subgroup	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	Weight	IV, Random, 95% CI [days]	Year	IV, Random, 95% CI [days]	
Kollef 1999	3.7	4.6	160	3.2	4.5	183	66.3%	0.50 [-0.47, 1.47]	1999		
Lorente 2007	14.1	17.91	140	15.5	19.93	140	3.1%	-1.40 [-5.84, 3.04]	2007	· · · · · · · · · · · · · · · · · · ·	
Bouza 2008	5.6	10.7	345	6.5	14.2	369	18.3%	-0.90 [-2.74, 0.94]	2008		
Lacherade 2010	15.9	14.4	169	15.7	20.4	164	4.3%	0.20 [-3.60, 4.00]	2010	3 3	
Damas 2014	16.2	13.52	170	15.76	13.15	182	8.0%	0.44 [-2.35, 3.23]	2014		
Total (95% CI)			984			1038	100.0%	0.17 [-0.62, 0.95]			Vo difference!
Heterogeneity. Tau ² =	= 0.00; Chi ² = 2	2.27, df = 4	4 (P = C	.69); ² = 0%					19		_
Test for overall effect	:Z = 0.41 (P =	0.68)								Favors SSD Favors Control	P

Crit Care Med 2016;44:830-840

Oral Care with Chlorhexidine: Significantly <u>Lower</u> VAP Rates

Chlorhexidine									
De Riso et al (1996) ¹⁸	3	173	9	180	3-8%				
Fourrier et al (2000) ¹³	5	30	18	30	7-0%				
Houston et al (2002) ²⁰	4	270	9	291	4-4%				
MacNaughton et al (2004) ²²	32	91	28	88	14-1%				
Grap et al (2004) ¹⁴	4	7	3	5	5-9%				
Fourrier et al (2005) ¹⁹	13	114	12	114	8-3%				
Bopp et al (2006) ¹⁷	0	2	1	3	0-9%				
Koeman et al (2006) ²¹	13	127	23	130	9.9%				
Tantipong et al (2008) ²³	5	102	12	105	5-5%				
Scannapieco et al (2009) ²⁶	14	116	12	59	8-8%				
Bellisimo-Rodriguez et al (2009) ²⁴	16	64	17	69	10-6%				
Panchabhai et al (2009) ²⁵	14	88	15	83	9-4%				
Subtotal (95% CI)		1184		1157	88-5%				
Total events	123		159						
Heterogeneity: τ²=0·06, χ²=15·54, df=11 (p=0·16); /²=29%									
Test for overall effect: Z=2-40 (p=0)- 02)								

Ventilator-Associated Pneumonia

Significantly lower VAP rates!

Lancet Infectious Disease 2011;11:845

Oral Care with Chlorhexidine: Significantly <u>*Higher*</u> Mortality Rates

	No of ever	its/total	Mortality		Mortality		
Study	Treatment	Control	Odds ratio, M-H random (95% CI)	Weight (%)	-		
Fourier 2000	3/30	7/30		2	0.37 (0.08 to 1.58)		
MacNaughton 2004	29/101	29/93	-	8	0.89 (0.48 to 1.64)		
Fourrier 2005	31/114	24/114	+	9	1.40 (0.76 to 2.58)		
Koeman 2006	49/127	39/130	-	12	1.47 (0.87 to 2.46)		
Tantipong 2008	36/102	37/105	+	10	1.00 (0.57 to 1.77)		
Scannapieco 2009	19/116	9/59		4	1.09 (0.46 to 2.58)		
Bellissimo-Rodrigues 20	09 35/98	33/96	+	9	1.06 (0.59 to 1.91)		
Munro 2009	69/275	47/272	-	18	1.60 (1.06 to 2.43)		
Panchabhai 2009	78/224	70/247	+	21	1.35 (0.91 to 2.00)		
Cabov 2010	1/30	3/30		<1	0.31 (0.03 to 3.17)		
Berry 2011	17/71	28/154	<u>+</u>	7	1.42 (0.72 to 2.80)		
Total (95% CI)	367/1288	326/1330		100	1.25 (1.05 to 1.50)		
Test for heterogeneity: τ^2 =	=0.00, χ ² =8.4	1, (0.01 0.1 1 10	100	Odds Ratio		
df=10, P=0.59, I ² =0%			Favours Favo	ours 1	.25 (1.05-1.50)		
Test for overall effect: z=2	.47, P=0.01			trol			

BMJ 2014;348:g2197

Sepsis

Pulmonary Edema

Atelectasis

Covid-19

Tobias Friedrich

Implications for Surveillance

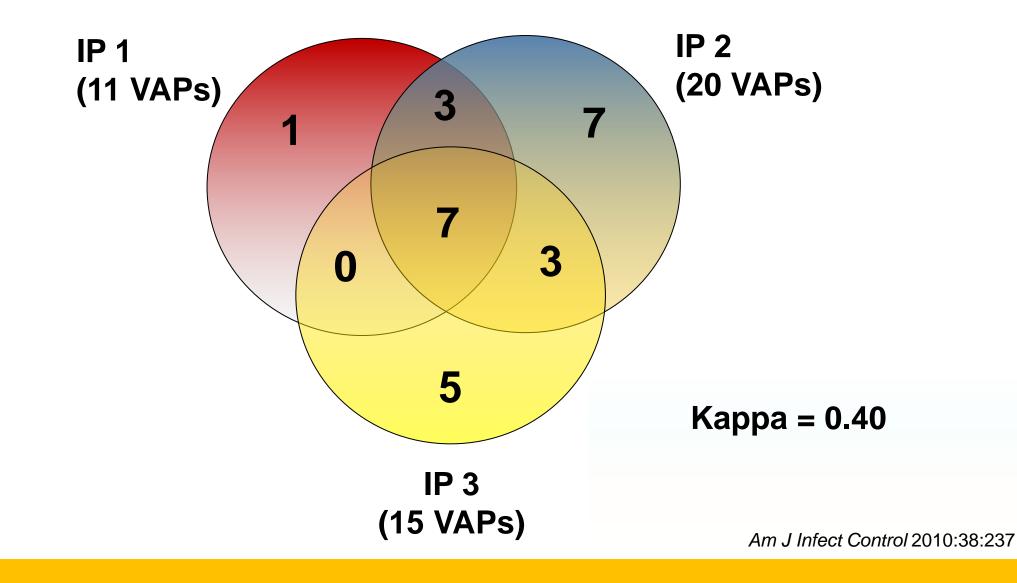
CDC's VAP Surveillance Definition

2008

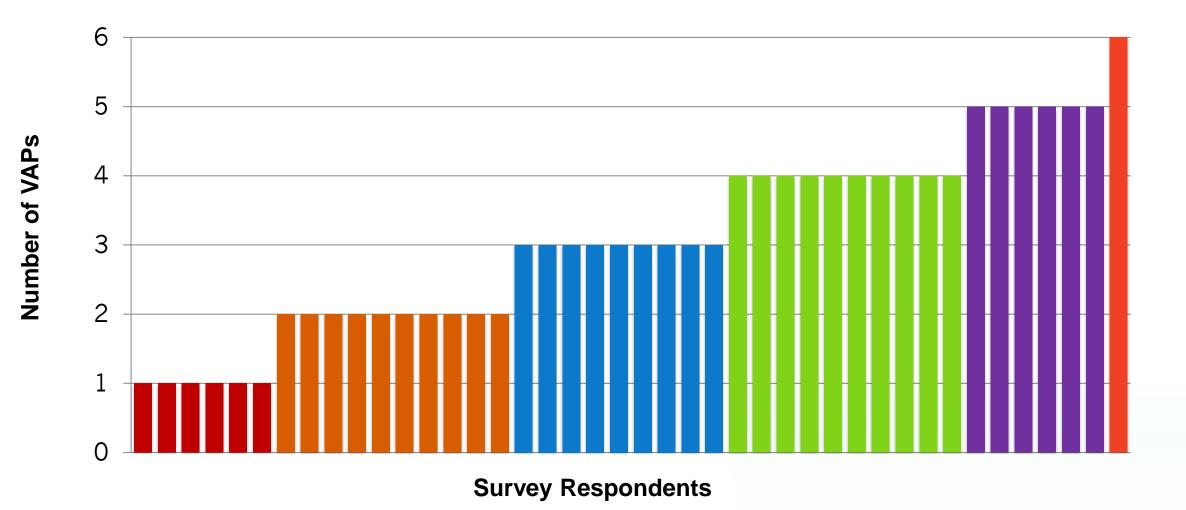
Patient must fulfill each of the three categories below:

Chest Radiograph	Any one of the following:1. New, progressive, or persistent infiltrate2. Consolidation3. Cavitation
Systemic Signs	 Any one of the following: 1. Temperature >38°C 2. WBC <4,000 or >12,000 WBC/mm³ 3. For adults 70 years old, altered mental status with no other recognized cause
Pulmonary Signs	 Any two of the following: 1. New onset of purulent sputum, or change in character of sputum, or increased respiratory secretions, or increased suctioning requirements 2. New onset or worsening cough, or dyspnea, or tachypnea 3. Rales or bronchial breath sounds 4. Worsening gas exchange, increased oxygen requirements, or increased ventilation demand

Complicated

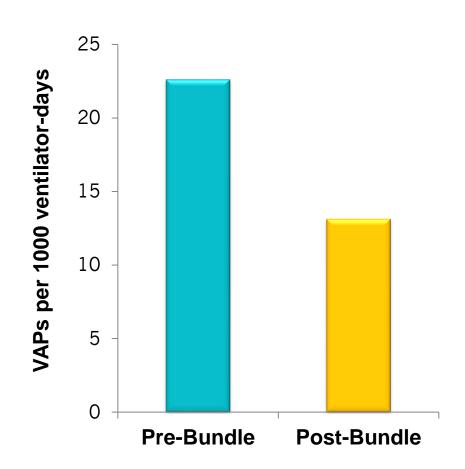

Labor Intensive

Subjective


Non-Specific

Interobserver Agreement in VAP Surveillance

50 ventilated patients with respiratory deterioration



6 Case Vignettes Presented to 43 Reviewers

Crit Care Med 2014;42:497

How do we interpret a drop in VAP rates?

Better Care?

Stricter Surveillance?

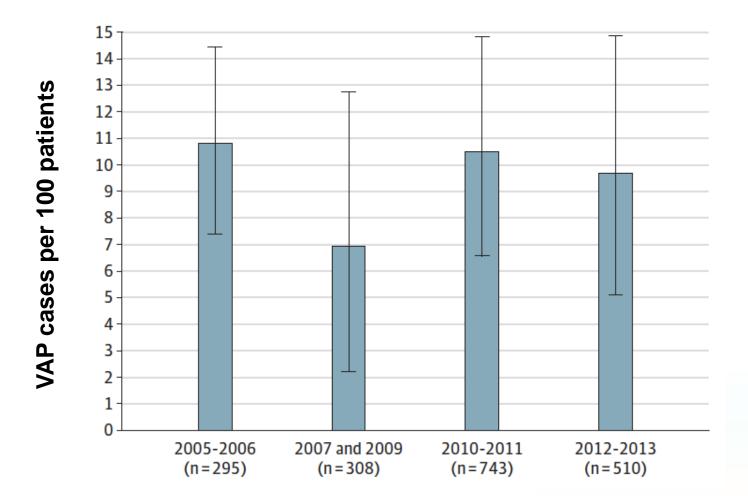
Less colonization vs less VAP?

Change in case mix?

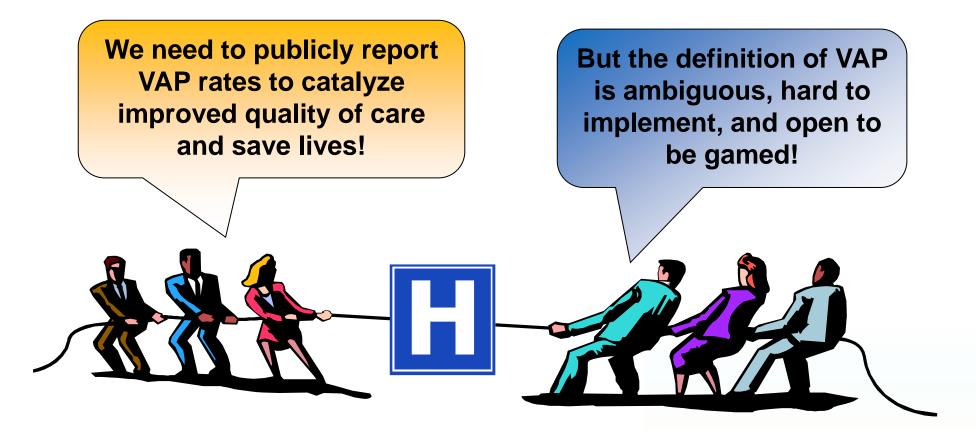
Some combination of the above?

Am J Infect Control 2012;40:408-410

U.S. National VAP Rates


Cases Reported to CDC by Hospitals, 2004-2012

Source: CDC NNIS and NHSN


U.S. National VAP Rates, 2005-2013

Centers for Medicare and Medicaid Services Audits

JAMA 2016;316:2427-2429

Where does this leave hospitals?

We help the world breathe® pulmonary · critical gare · sleep

P H Y S I C I A N S

Council of State and Territorial Epidemiologists

Leaders in Applied Public Health Epidemiology

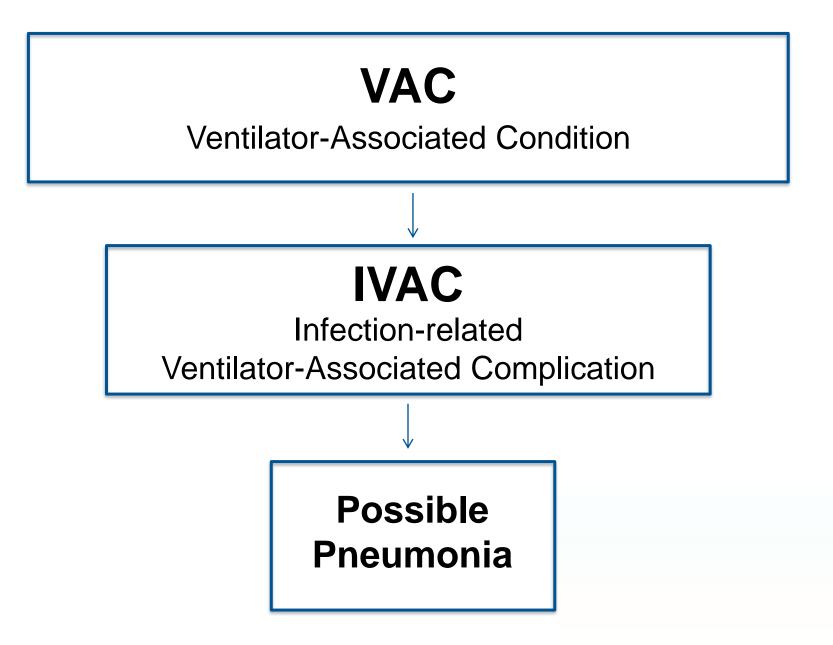
Developing a New, National Approach to Surveillance for Ventilator-Associated Events*

Shelley S. Magill, MD, PhD¹; Michael Klompas, MD, MPH^{2,3,4}; Robert Balk, MD^{5,6}; Suzanne M. Burns, RN, ACNP, MSN, RRT^{6,7}; Clifford S. Deutschman, MS, MD^{6,8}; Daniel Diekema, MD^{9,10}; Scott Fridkin, MD¹; Linda Greene, RN, MPS^{11,12}; Alice Guh, MD, MPH¹; David Gutterman, MD^{6,13}; Beth Hammer, RN, MSN, ANP-BC^{6,14}; David Henderson, MD¹⁵; Dean Hess, PhD, RRT^{16,17,18}; Nicholas S. Hill, MD^{6,19}; Teresa Horan, MPH¹; Marin Kollef, MD^{6,20}; Mitchell Levy, MD^{6,21}; Edward Septimus, MD^{22,23}; Carole VanAntwerpen, RN, BSN^{24,25}; Don Wright, MD, MPH²⁶; Pamela Lipsett, MD, MHPE^{6,27}

VAE: An Alternative Approach to Surveillance

- Broaden the focus of surveillance from pneumonia alone to the syndrome of ventilator complications in general
 - More accurate description of what can be reliably determined using surveillance definitions
 - Emphasizes the importance of preventing *all* complications of mechanical ventilation, not just pneumonia

Streamline the definition using quantitative criteria


- Reduce ambiguity
- Improve reproducibility
- Enable electronic collection of all variables

Ventilator-Associated Events (VAE)

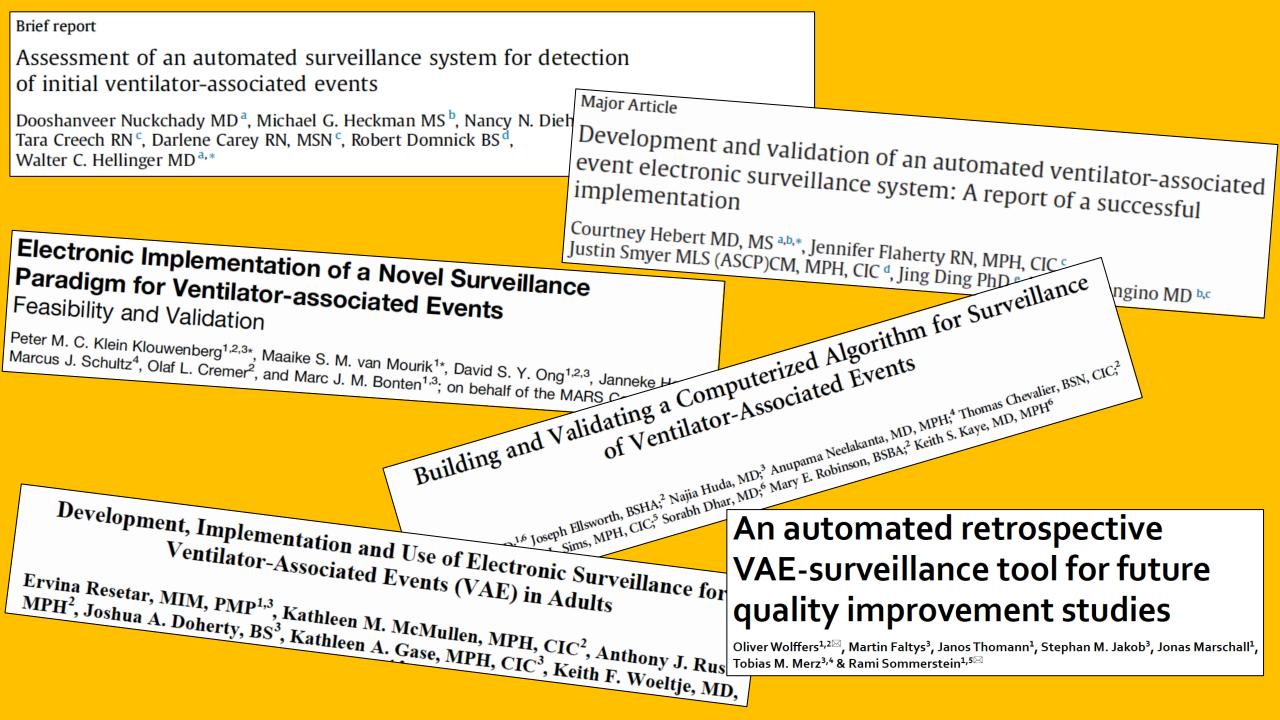
Sustained rise in daily minimum PEEP ≥3cm or FiO2 ≥20 points after a period of stable or improving daily minimum PEEP or FiO2

Date	PEEP (min)	FiO2 (min)
Jan 1	10	100
Jan 2	5	50
Jan 3	5	40
Jan 4	5	40
Jan 5	5	50
Jan 6	8	60
Jan 7	8	40
Jan 8	5	40
Jan 9	5	40

Pediatric Ventilator-Associated Events (PedVAE)

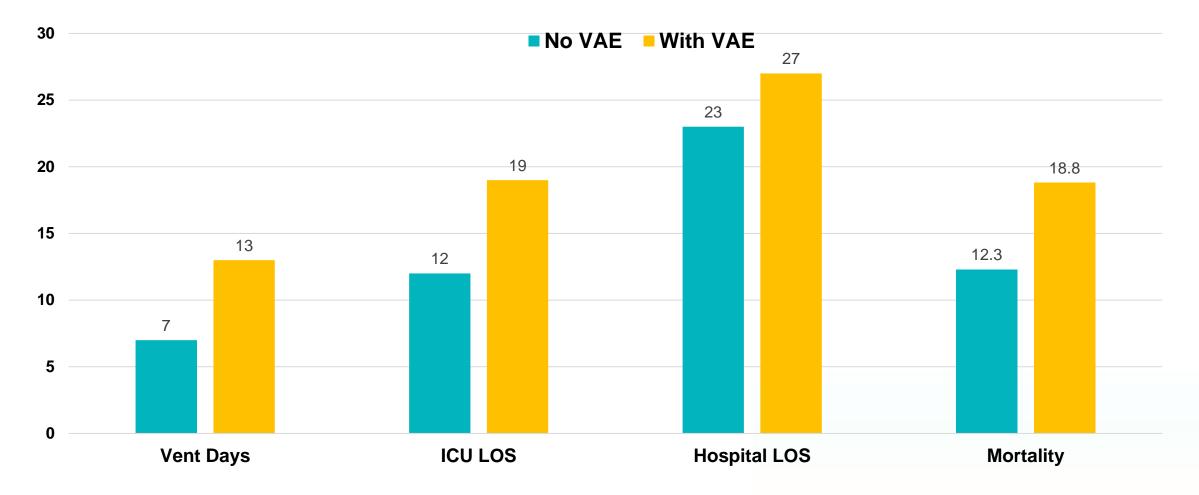
Sustained rise in daily minimum MAP ≥4cm or FiO2 ≥25 points after a period of stable or improving daily minimum MAP or FiO2

Date	MAP (min)	FiO2 (min)	
Jan 1	7	100	
Jan 2	7	50	
Jan 3	8	40	
Jan 4	8	40	
Jan 5	8	60	
Jan 6	12	50	
Jan 7	12	40	PedVAE
Jan 8	5	40	
Jan 9	5	40	



https://www.cdc.gov/nhsn/vae-calculator/index.html

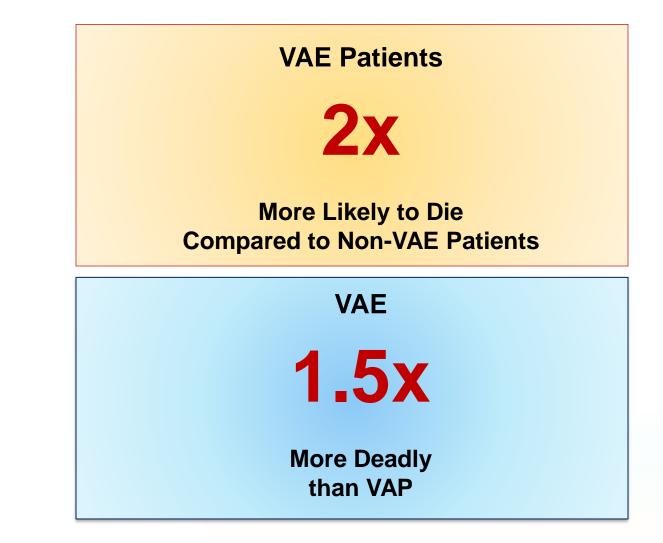
National Healthcare Safety Network (NHSN)


			9	itart Over	Calc	ulate IVA	٨C	Explain	Go to PVAP		
MV	Date	Hide	Min.	Hide	Min.	VAE	T<36°	WBC ≤ 4,000		Add	QAD
Day		PEEP		FiO ₂			or	or		Remove	
		(cmH ₂ O)		(21 - 100)			T>38°	WBC \ge 12,000 cells/mm ³		Choose a Drug:	
									CEFEPIME	\$	
1	12/3/2023	5		60							
2	12/4/2023	5		40							
† 3	12/5/2023	5		40							
† 4	12/6/2023	10		70		‡ IVAC					¶ yes
† 5	12/7/2023	8		50					•		¶ yes
† 6	12/8/2023	8		40							¶ yes
7	12/9/2023	5		40							¶ yes
8	12/10/2023	5		40							¶ yes
9	12/11/2023	5		40							¶ yes
10	12/12/2023										¶ yes

Legend: + - VAE Window + - VAE Date - Qualifying Antimicrobial Day (QAD)

VAE Associated with Poor Outcomes

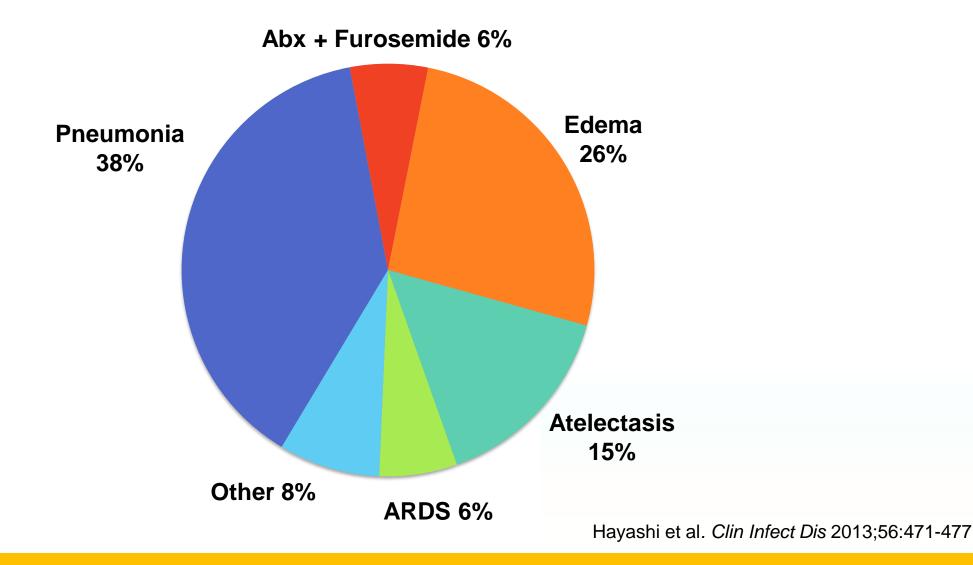
Propensity matched* analysis of 1803 VAEs vs 2,319 patients without VAEs, West China Hospital, 2015-2018


*Variables in propensity score included age, APACHE II, comorbidities, pneumonia, organ failure, surgery, transfusions, immunosuppressives, central lines, IMV after ICU admission

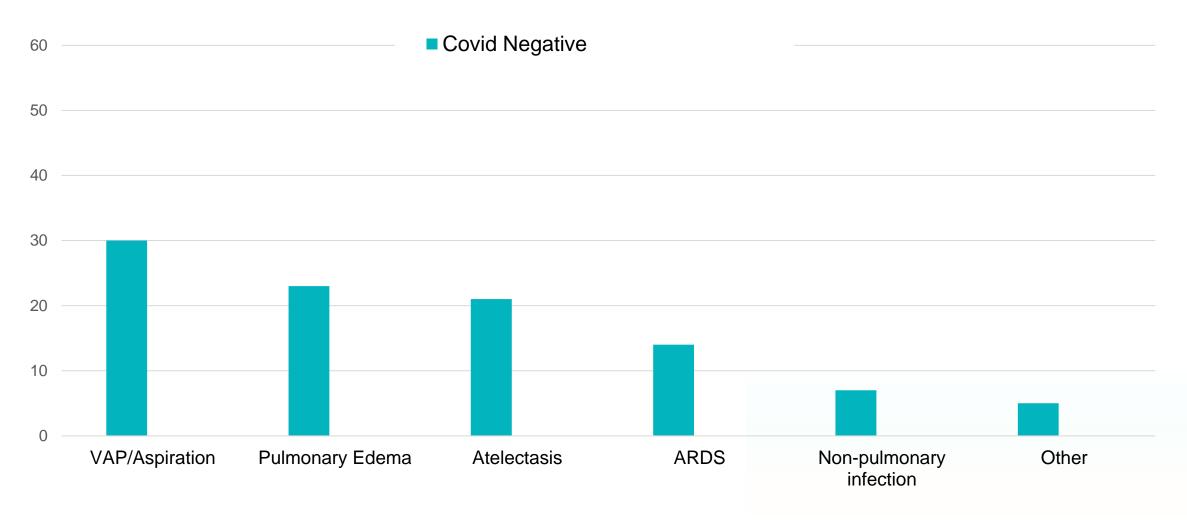
Zhu, Infect Control Hospital Epidemiol 2022;1:48-55

VAE Associated with Poor Outcomes

Meta-analysis

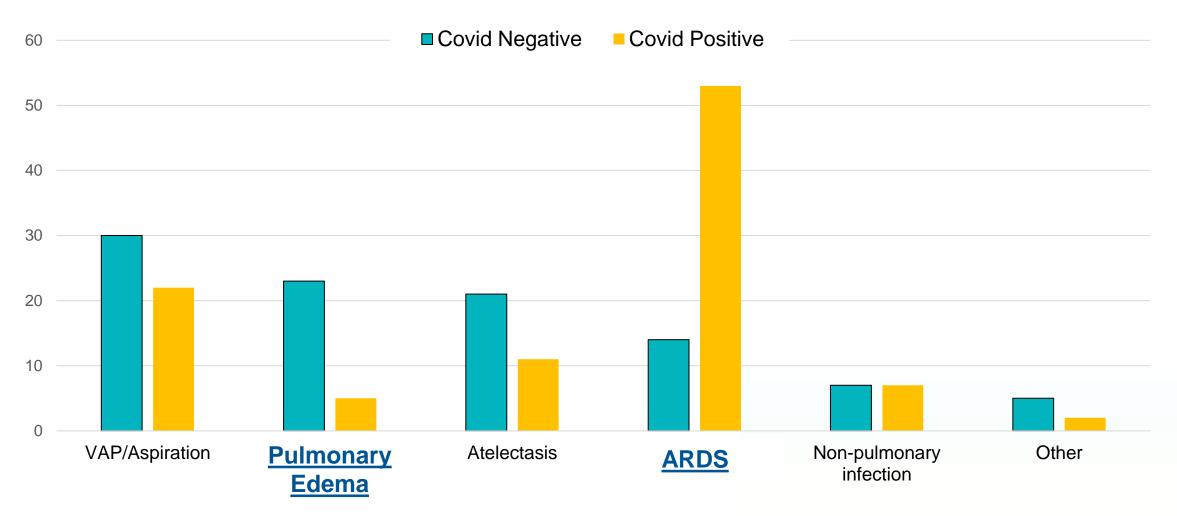

- 18 studies
- 61,489 patients

Qualitative analysis of 153 VAEs


Royal Brisbane & Women's Hospital, Queensland, Australia

VAE = VAP +Fluid + ARDS + Atelectasis

Impact of Covid on VAE


Clinical events leading to VAE in 200 randomly selected VAEs (½ with Covid, ½ without), March-Aug 2020, Mass General Brigham Hospitals

Weinberger, Annals ATS 2022;19:82-89

Impact of Covid on VAE

Clinical events leading to VAE in 200 randomly selected VAEs (½ with Covid, ½ without), March-Aug 2020, Mass General Brigham Hospitals

Fever VAEs How do we get there?

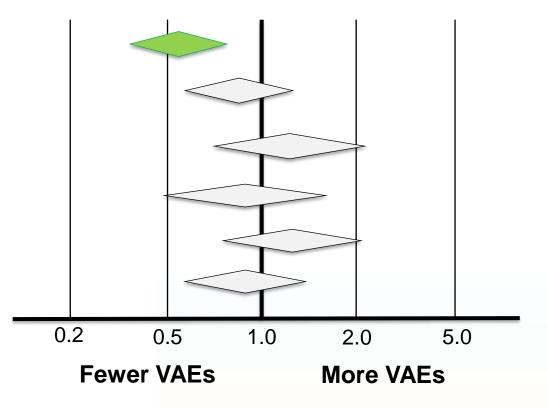
Strategies for Preventing VAEs

Decrease duration of mechanical ventilation Target the primary conditions associated with VAEs

Strategies for Preventing VAEs

Avoid Intubation Minimize sedation e **Paired SATs and SBTs Early mobility Conservative fluid** management **Minimize blood** transfusions

VAE Prevention Strategies


<i>Well aligned with other best practice initiatives</i>	ABCDEF	Choosing Wisely	PAD Guidelines	Surviving Sepsis	Strategies to Prevent VAP
Minimize sedation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Paired SATs and SBTs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Early Mobility	\checkmark		\checkmark	\checkmark	\checkmark
Conservative fluid management				\checkmark	
Conservative transfusion thresholds		\checkmark		\checkmark	

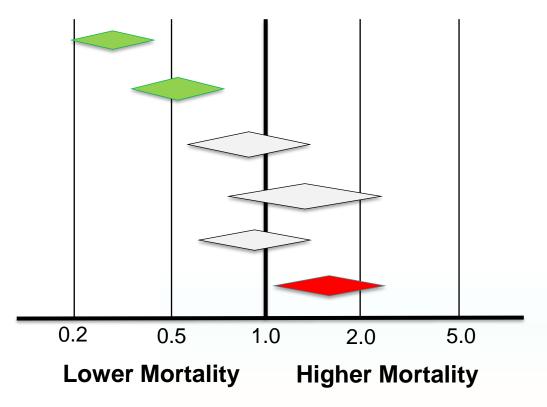
Ventilator Bundle Compliance and VAEs

Retrospective analysis of 5,539 patients on mechanical ventilation

adjusted for comorbidities, severity of illness, contraindications, etc.

Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Thromboprophylaxis Stress ulcer prophylaxis Oral care with chlorhexidine

Hazard Ratios for VAEs

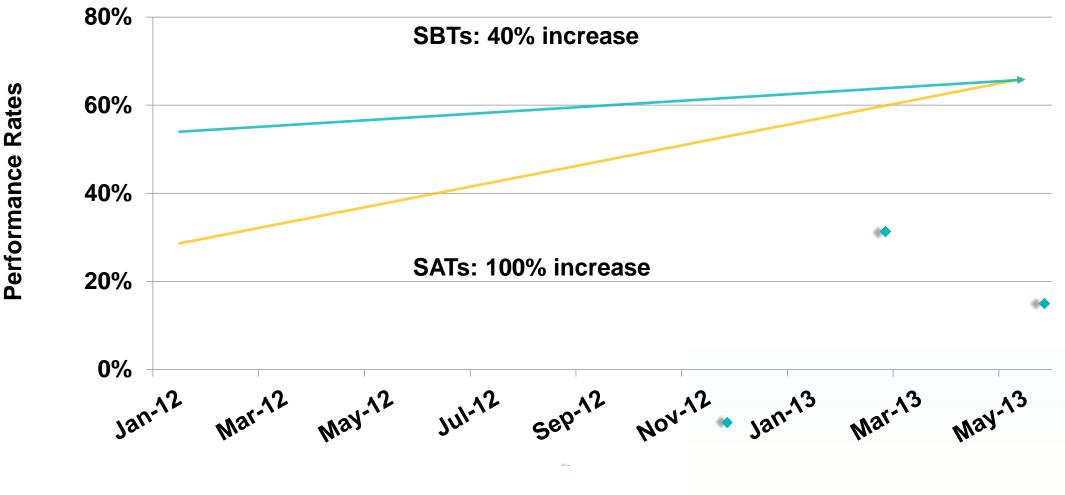

JAMA Internal Med 2016;176:1277-1283

Ventilator Bundle Compliance and Death

Retrospective analysis of 5,539 patients on mechanical ventilation

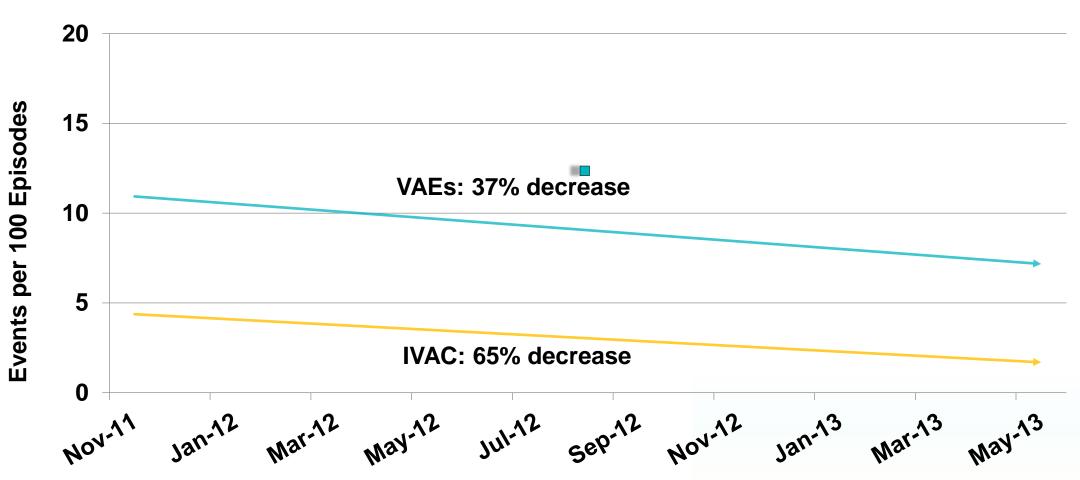
adjusted for comorbidities, severity of illness, contraindications, etc.

Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Thromboprophylaxis Stress ulcer prophylaxis Oral care with chlorhexidine



Hazard Ratios for Ventilator Death

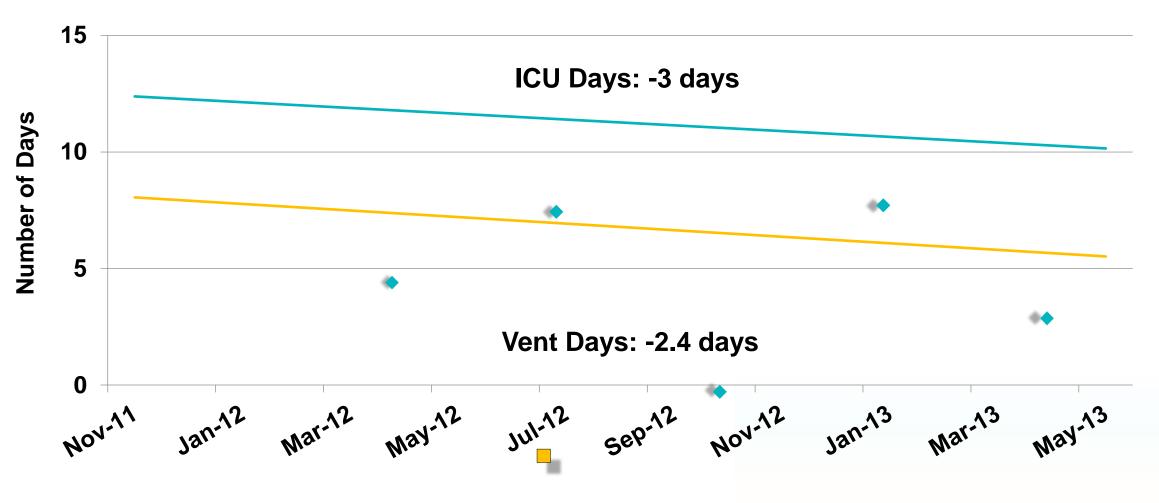
JAMA Internal Med 2016;176:1277-1283


SATs and SBTs Lower VAE Rates

CDC Prevention Epicenters care improvement collaborative, 12 ICUs, 5164 patients, 2011-2013

Am J Resp Crit Care Med 2015;191:292-301

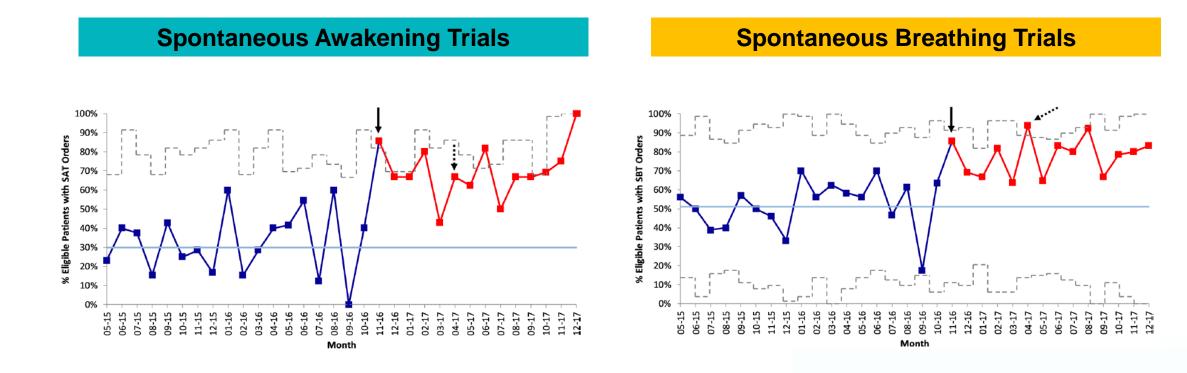
Ventilator-Associated Events



CDC Prevention Epicenters care improvement collaborative, 12 ICUs, 5164 patients, 2011-2013

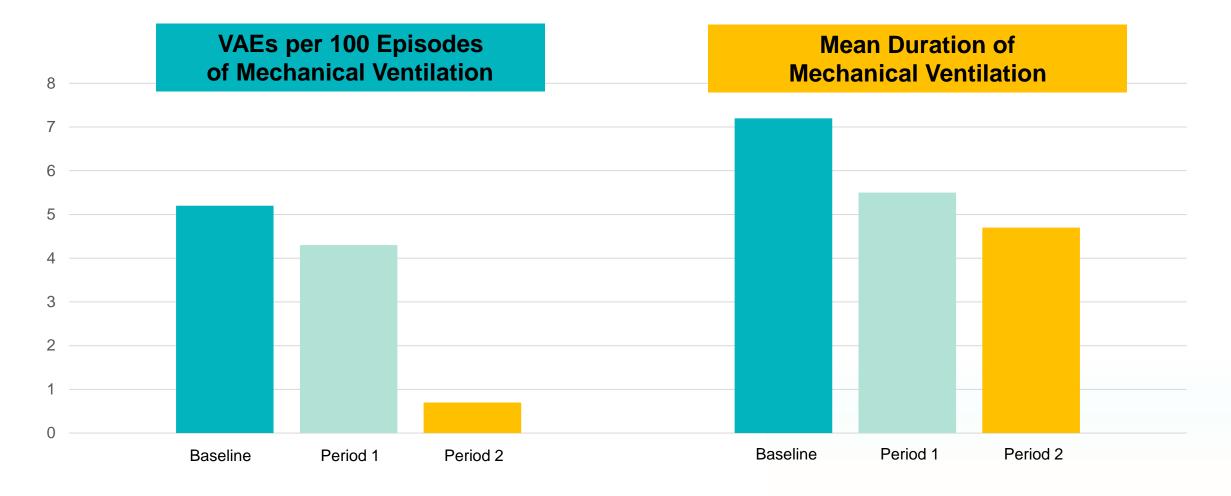
Am J Resp Crit Care Med 2015;191:292-301

Ventilator Days and ICU Days


CDC Prevention Epicenters care improvement collaborative, 12 ICUs, 5164 patients, 2011-2013

Am J Resp Crit Care Med 2015;191:292-301

Increase in SATs & SBTs associated with Fewer VAEs


Quality improvement initiative, Veterans Affairs Greater Los Angeles, 2015-2017

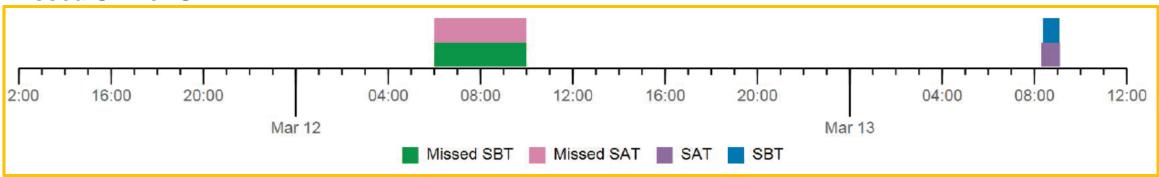
Chumpia, BMJ Open Quality 2019;8:e000426

Increase in SATs & SBTs associated with Fewer VAEs

Quality improvement initiative, Veterans Affairs Greater Los Angeles, 2015-2017

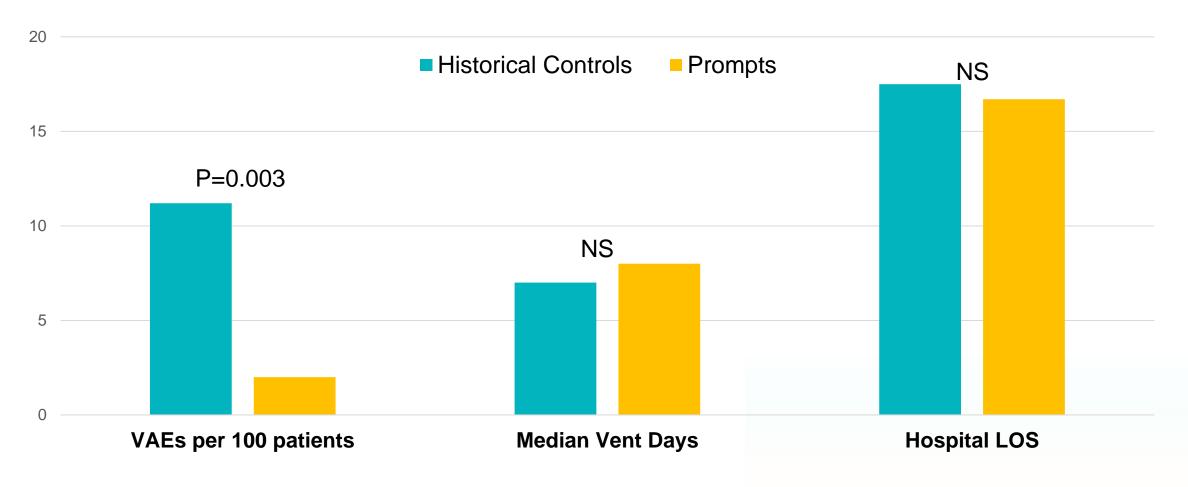
Chumpia, BMJ Open Quality 2019;8:e000426

Bedside Prompts on SATs, SBTs, and Impending VAEs


Population Summary (fake data)

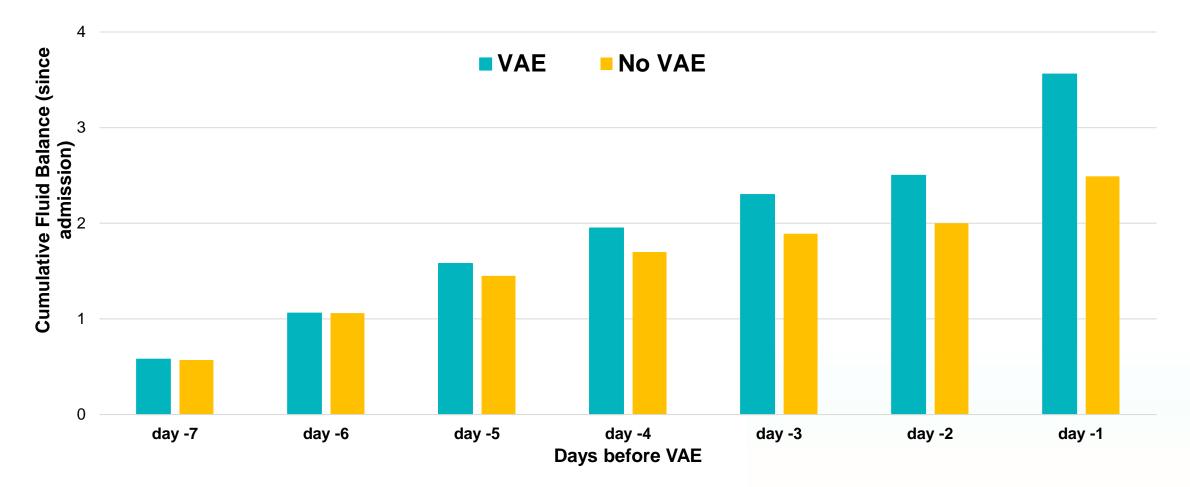
All Markers	Eckland, Erin (71 F)	Underhurst, Uw	
Missed SBT 3 patients	ICU A RM 01 BD 01 Visit V67960 Number of Active Markers: 5	ICU A RM 01 BD 02 Number of Active Ma	
Late SAT	SAT Occurred Outside the 03/13/15 10:19 Configured Protocol Period	SAT Duration Great Maximum Configure	
2 patients Missed SAT	Set Ve high alarm limit is non- 03/13/15 06:48 compliant with operational	Increased Sedation	
1 patient	Odelfield, Octavian (85 M)	Tamarack, Tim	
Short SAT 1 patient	ICU A RM 02 BD 04 Visit V67980 Number of Active Markers: 1	ICU A RM 04 BD 10 Number of Active Ma	
Long SAT	Patient is Trending Toward a VAE 03/13/15 00:00	Increased Sedation	
1 patient SAT w/o Titration 1 patient	Event - Day 1	Set Ve high alarm li compliant with oper policy	

Impending VAEs


Inderhurst, Uwo CU A RM 01 BD 02 umber of Active Ma		VAE Sur	veillance	٣	
	Patient		03/11/15	03/12/15	03/13/15
SAT Duration Great	Smith, James	FiO2	+		
ncreased Sedation	5 days on vent	PEEP			
10.1.1	Townsley, Peter	FiO2)
amarack, Tim	7 days on vent	PEEP	aprv	aprv	aprv
CU A RM 04 BD 1 umber of Active Ma	Adams, Roger	FiO2		4	
ncreased Sedation	3 days on vent	PEEP			
Set Ve high alarm li	Sanders, Henry	FiO2	3	A	
compliant with oper policy	9 days on vent	PEEP			

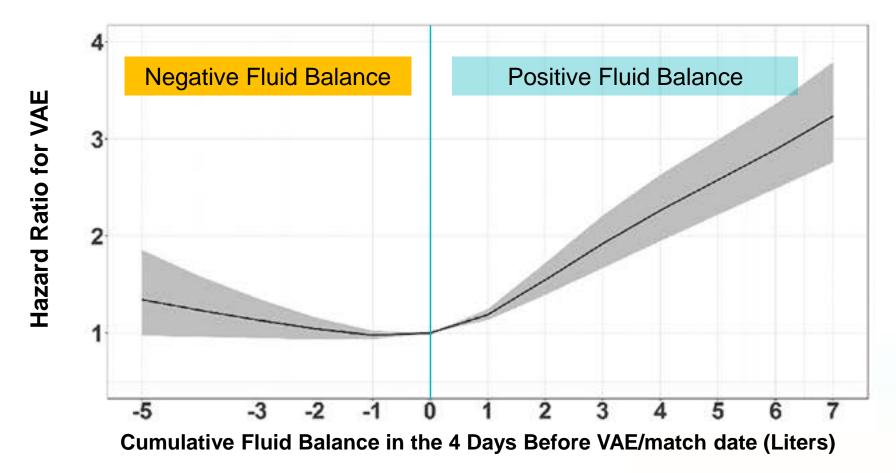
Missed SAT or SBT

Bedside Prompts on SATs, SBTs, and Impending VAEs


Retrospective evaluation of use of bedside electronic rounding tool with SAT, SBT, and impending VAE prompts on outcomes amongst 150 intervention patients vs 187 historical control patients

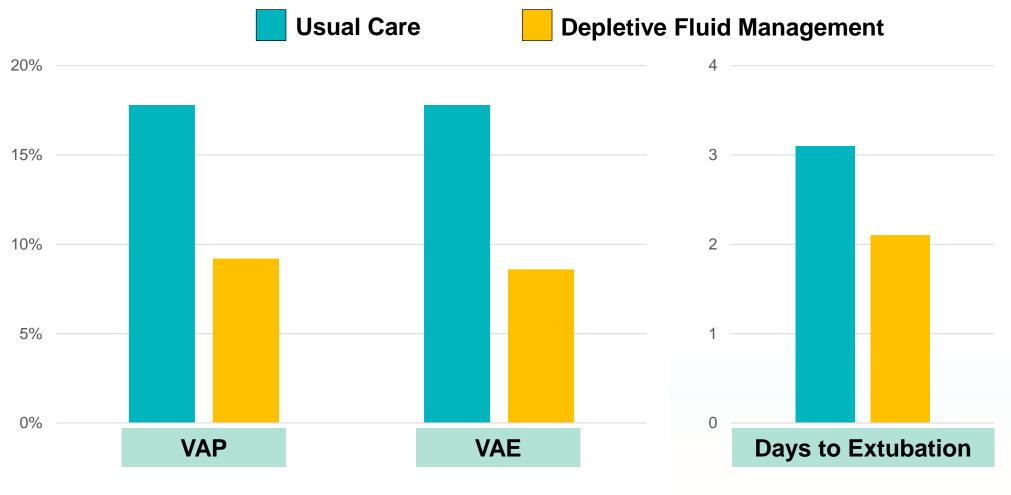
Oglesby, Critical Care Explorations 2021;3(4):e0379

Strong Association between Fluid Balance and VAEs


Cumulative fluid balance amongst 1,528 VAE patients matched to 3,038 non-VAE patients on basis of age, time to VAE, and time from ICU admission until initiation of mechanical ventilation, West China Hospital, 2015-2018.

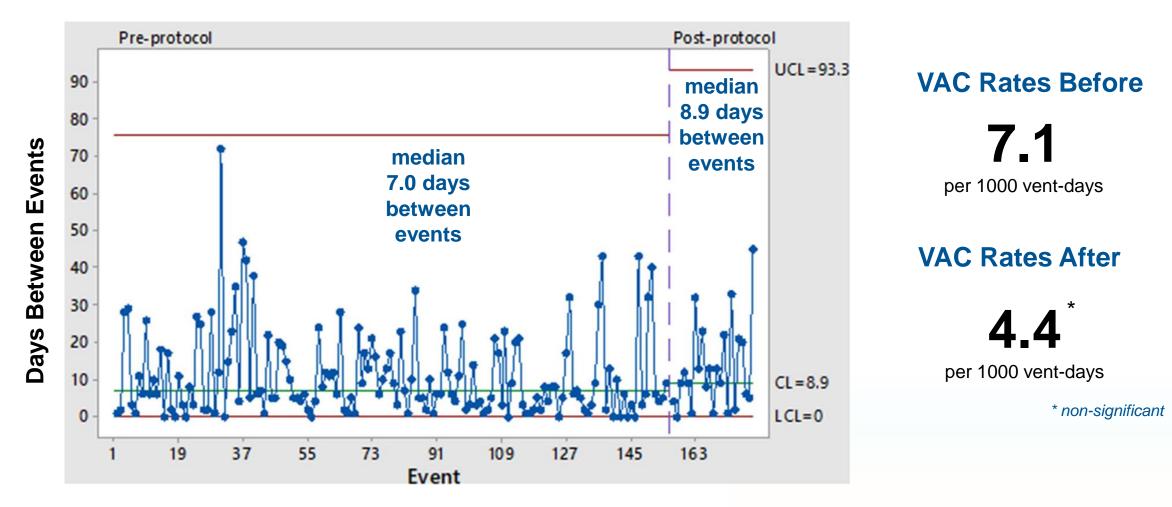
Wang, Critical Care Medicine 2022;50:307-316

Strong Association between Fluid Balance and VAEs


Cumulative fluid balance amongst 1,528 VAE patients matched to 3,038 non-VAE patients on basis of age, time to VAE, and time from ICU admission until initiation of mechanical ventilation, West China Hospital, 2015-2018. Adjusted for demographics, ICU type, comorbidities, ICU diagnosis, APACHE II, meds, procedures, and others.

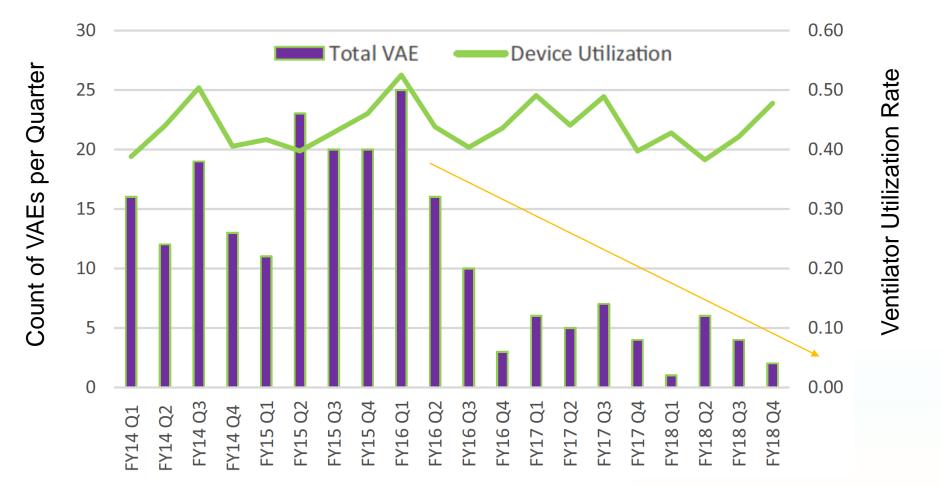
Wang, Crit Care Med 2022;50:307-316

Depletive Fluid Management Lowers VAE Rates


Randomized controlled trial of depletive fluid management during ventilator weaning (smaller volume infusions, more diuresis), N=304

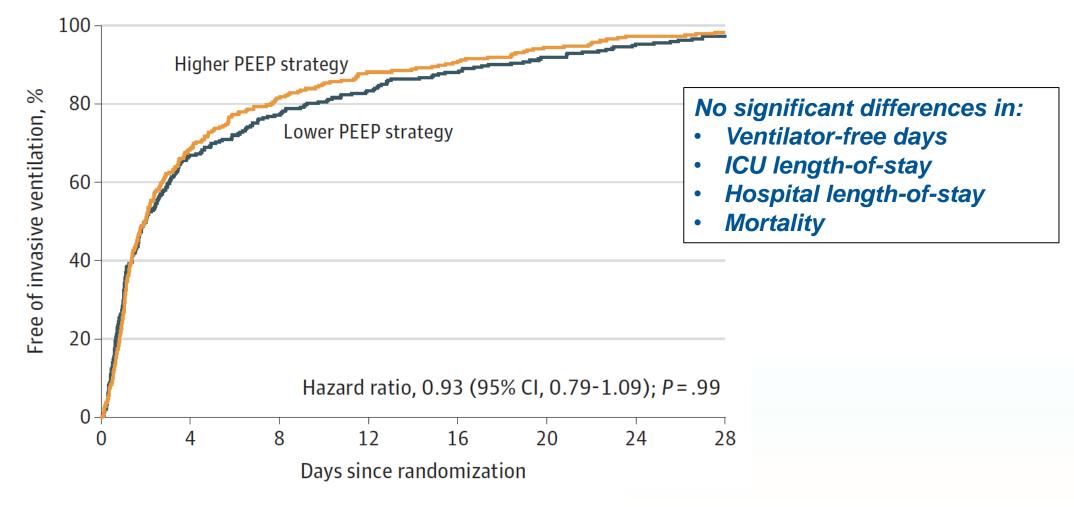
Chest 2014;146:58-65

Change Default PEEP from 5 to 8cm H₂O


Retrospective analysis of change in starting PEEP from 5 to 8cm H₂O, University of Toledo, 2014-2019

Barnett, Frontiers in Medicine 2021;8:744651

Change Default PEEP from 5 to 6cm H_2O


Serial implementation of readiness to wean protocols, change in default PEEP from 5 to 6, increased emphasis on mobilizing patients, root cause analyses on all VAEs, 2015-2018, Saint Francis Hospital, CT

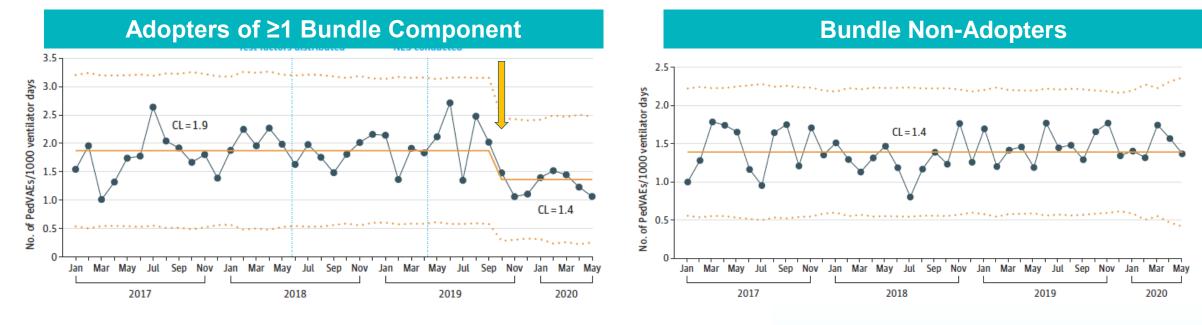
Seaver, Am J Infect Control 2020;48:828-30

Is there any benefit associated with higher vs lower default PEEP?

980 ICU patients without ARDS randomized to PEEP 0-5cm H2O vs 8cm H2O, 8 hospitals, Netherlands

RELAx Collaborative, JAMA. 2020;324:2509-2520

What about PedVAE?


Multicenter Quality Improvement Initiative

Members of the Children's Hospital Solutions for Patient Safety network created a PedVAE reporting and quality improvement bundle. Uptake varied across the network. Outcomes compared in adopters vs non-adopters.

Multidisciplinary	Daily Discussion of	Daily Discussion of
Apparent Cause Analyses	Extubation Readiness	Fluid Balance Goals
 Multidisciplinary ACA event form completed for each PedVAE ACA used to inform Pareto charts of institution-specific causes of PedVAE to identify areas for improvement 	 Discussion included: Necessity for ETT Target extubation time Respiratory support plan Pre-extubation sedation, or analgesics, or restraints Post-extubation sedation or analgesic plan Scheduled re-evaluation time 	 Discussion of patient-specific fluid balance goals Documentation of fluid balance goal at least daily

Multicenter Quality Improvement Initiative

Members of the Children's Hospital Solutions for Patient Safety network created a PedVAE reporting and quality improvement bundle. Uptake varied. Outcomes compared in 12 adopting vs 33 non-adopting hospitals.

26% drop in PedVAE rates from 1.9 to 1.4 events per 1000 ventilator-days

No change in PedVAE rates

Wu, JAMA Network Open 2023;6(12):e2346545

Ventilator-associated events

A patient safety opportunity

Broaden Awareness

 Provides hospitals with a fuller picture of serious complications in mechanically ventilated patients

Catalyze Prevention

 A significant portion of VAEs are preventable through well-accepted best practices in critical care

Reflect and Inform Progress

 VAE surveillance provides an efficient and objective yardstick to measure and benchmark progress

Summary

- VAP is a **poor metric for benchmarking** and quality improvement
 - Diagnosis subjective and inaccurate
 - High interobserver variability
 - Poor guide to selecting prevention practices that will improve patient outcomes
- CDC created ventilator-associated event definitions to enhance objectivity, automation, and expand prevention efforts
 - Suitable for automated surveillance
- Strategy to lower VAE rates and improve outcomes is to reduce ventilator days & prevent the primary conditions associated with VAEs (pneumonia, ARDS, atelectasis, fluid overload)
 - Avoid intubation
 - Minimize sedation
 - Paired daily SATs and SBTs
 - Early mobility
 - Conservative fluid management
 - Minimize blood transfusions

Thank You!

mklompas@bwh.harvard.edu